Рекомендации по проектированию и устройству свайных фундаментов на пучинистых грунтах
ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ, ЭКСПЕРИМЕНТАЛЬНЫЙ И ПРОЕКТНЫЙ ИНСТИТУТ ПО СЕЛЬСКОМУ СТРОИТЕЛЬСТВУ
(ЦНИИЭПсельстрой)
РЕКОМЕНДАЦИИ
ПО ПРОЕКТИРОВАНИЮ И УСТРОЙСТВУ СВАЙНЫХ ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ
МОСКВА - 1989
РАЗРАБОТАНЫ:
Центральным научно-исследовательским, экспериментальным и проектным институтом по сельскому строительству (ЦНИИЭПсельстроем)
Зам. директора В.А. Заренин
Московским Государственным научно-исследовательским и проектным институтом по сельскому строительству (Мосгипрониисельстроем) Мособлагропрома
Директор А.С. Мирошниченко
Одобрены секцией "Строительные конструкции и технология их производства" Ученого совета ЦНИИЭПсельстроя, секцией Научно-технического совета Мосгипрониисельстроя.
ПРЕДИСЛОВИЕ
Пирамидальные и короткие буронабивные сваи являются эффективными конструкциями нулевого цикла малоэтажных агропромышленного комплекса. Использование фундаментов из коротких свай в морозоопасных, пучинистых грунтах ограничено действующими нормативными документами. Выполнение требования норм, согласно которому не допускаются даже незначительные перемещения свай, вызванные пучением грунта, приводит к увеличению их длины, что резко ухудшает технико-экономические показатели свайных фундаментов.
Вместе с тем, требование недопустимости выпучивания свай не является оправданным, так как любое здание и сооружение в состоянии переносить некоторые неравномерные деформации оснований. Применение фундаментов из коротких свай базируется на принципиально новом подходе к их проектированию, в основу которого положен расчет по деформациям пучения. Подобный подход использован и при проектировании мелкозаглубленных фундаментов. Положительный опыт строительства и эксплуатации зданий с мелкозаглубленными фундаментами о его правомерности.
При конструировании фундаментов из коротких свай используется тот же принцип, что и при конструировании мелкозаглубленных столбчатых фундаментов: фундаментные балки, цокольные панели объединяются в единую систему, образуя достаточно жесткую горизонтальную раму.
Такая система перераспределяет неравномерные перемещения отдельных свай, выравнивает их, что в конечном итоге уменьшает относительные деформации фундаментов и надземных конструкций зданий.
При проектировании свайных фундаментов так же, как и мелкозаглубленных, выдвигается требование, чтобы абсолютные и относительные деформации пучения не превосходили предельно допустимых. Последние зависят от конструктивных особенностей зданий и регламентируются ВСН 29-85.
Для свайных фундаментов, в несущей способности которых большой удельный вес составляет несущая способность боковой поверхности, необходимо выполнять условие отсутствия остаточных деформаций пучения.
Необходимо, чтобы при оттаивании грунта сваи возвращались в первоначальное положение, т.е. их осадки должны быть не меньше, чем подъемы, вызванные силами пучения.
Таким образом, при проектировании коротких свай их геометрические размеры должны обеспечивать необходимую несущую способность, а действующая нагрузка должна обеспечивать регламентированный подъем и возвращение сваи после оттаивания грунта в первоначальное положение.
В последние годы ЦНИИЭПсельстроем проведены обширные исследования взаимодействия свайных фундаментов с пучинистыми грунтами. Испытания фундаментов выполнены на площадках, сложенных грунтами с разной степенью пучинистости. На основе результатов исследований обоснована техническая возможность применения коротких свай в пучинистых грунтах, разработаны методы их расчета по деформациям пучения.
Положения настоящих "Рекомендаций" апробированы при проектировании и строительстве свайных фундаментов для жилых домов усадебного типа. В настоящее время на пучинистых грунтах с использованием таких фундаментов построено более 600 домов в Омской, Пермской, Саратовской, Ярославской и др. областях. За многими их этих зданий ведутся инструментальные наблюдения, свидетельствующие о надежной работе фундаментов из коротких свай. Вместе с тем, применение таких фундаментов взамен ленточных из сборных блоков, закладываемых ниже глубины промерзания грунта, позволило уменьшить расход бетона на 30...60%, объем земляных работ - на 80...90%, трудозатраты - в 1,5...2 раза.
"Рекомендации" разработаны кандидатами технических наук В.С. Сажиным и В.Я. Шишкиным. В работе над ними принимали участие инженеры Л.М. Зарбуев, К.Ш. Погосян, Т.А. Приказчикова (ЦНИИЭПсельстрой), кандидат технических наук А.Г. Бейрит, инженер А.П. Айдаков (Мосгипрониисельстрой) и кандидат технических наук В.Н. Зекин (Пермский ГСХИ).
"Рекомендации" распространяются на проектирование фундаментов из коротких (длиной до 4 м) пирамидальных и буронабивных свай малоэтажных (до двух этажей включительно) сельских зданий, строящихся на слабо- и среднепучинистых грунтах при нормативной глубине промерзания не более 1,7 м.
При этом должны соблюдаться требования, предусмотренные СНиП 2.02.01-83 с изменениями к нему № 211, другими соответствующими общесоюзными документами.
1. Общие положения
1.1. Расчет свайных фундаментов следует производить по несущей способности и по деформации пучения. Деформации фундаментов, вызванные морозным пучением грунтов, не должны превосходить предельных деформаций, которые зависят от конструктивных особенностей зданий.
1.2. При проектировании свайных фундаментов на пучинистых грунтах необходимо предусматривать мероприятия (инженерно-мелиоративные, строительно-конструктивные и др.), направленные на уменьшение деформаций зданий и сооружений.
Выбор типа и конструкции фундамента, способа подготовки основания и других мероприятий по уменьшению неравномерных деформаций здания от морозного пучения должен решаться на основе технико-экономического анализа с учетом конкретных условий строительства.
2. Конструктивные мероприятия при использовании свайных фундаментов в пучинистых грунтах
2.1. Для зданий с малонагруженными фундаментами следует применять такие конструктивные решения, которые направлены на снижение сил морозного пучения и деформаций конструкций зданий, а также на приспособление зданий к неравномерным перемещениям оснований.
2.2. Конструктивные мероприятия назначаются в зависимости от типа свайного фундамента, конструктивных особенностей здания и степени пучинистости грунта основания, определяемой в соответствии с "Ведомственными строительными нормами по проектированию мелкозаглубленных фундаментов малоэтажных сельских зданий на пучинистых грунтах" (ВСН 29-85).
2.3. В зданиях с несущими стенами короткие буронабивные сваи на среднепучинистых грунтах должны быть жестко связаны между собой фундаментными балками (ростверками), объединенными в единую рамную систему. При безростверковом решении фундаментов крупнопанельных зданий жестко соединяются между собой цокольные панели.
На практически непучинистых и слабопучинистых грунтах элементы ростверков соединять между собой не требуется.
2.4. При использовании в зданиях с несущими стенами пирамидальных свай требование жестко соединять между собой элементы ростверков следует выполнять при строительстве на среднепучинистых (с интенсивностью пучения более 0,05) грунтах. Интенсивность пучения грунта определяется в соответствии с ВСН 29-85.
2.5. В необходимых случаях для увеличения жесткости стен зданий, строящихся на среднепучинистых грунтах, следует предусматривать устройство армированных или железобетонных поясов над проемами верхнего этажа и в уровне перекрытий.
2.6. При устройстве свайных фундаментов необходимо предусматривать зазор между ростверками и планировочной поверхностью грунта, который должен быть не менее расчетной деформации пучения ненагруженного грунта. Последняя определяется в соответствии с ВСН 29-85.
2.7. Протяженные здания следует разрезать по всей высоте на отдельные отсеки, длина которых принимается: для слабопучинистых грунтов до 30 м, среднепучинистых - до 25 м.
2.8. Секции зданий, имеющие разную высоту, следует устраивать на раздельных фундаментах.
3. Расчет оснований свайных фундаментов на действие вертикальных нагрузок
3.1. Расчетная вертикальная нагрузка Р, кН, допускаемая на сваю определяется по формуле
(3.1)
где N - расчетная нагрузка, передаваемая на сваю;
Fd - расчетная несущая способность сваи по грунту;
- коэффициент надежности, принимаемый равным 1,25, если несущая способность сваи определена по результатам полевых испытаний статической нагрузкой или расчетом по деформациям.
3.2. Расчетная несущая способность короткой буронабивной сваи по грунту определяется по формуле
(3.2)
где К0 - коэффициент пропорциональности, равный отношению нагрузки на пяту сваи к общей нагрузке при предельной осадке сваи S0, принимаемой равной 8 см: коэффициент К0 зависит от отношения длины сваи l к ее диаметру d и консистенции грунтов. Для грунтов твердой и полутвердой консистенции при l/d 3,75 К0=0,45; при 3,75 < l/d 5 К0=0,40; при 5 < l/d 7,5 К0=0,37. Для грунтов тугопластичной консистенции при указанных отношениях l/d коэффициент К0 равен соответственно 0,5; 0,45 и 0,40. Для грунтов мягкопластичной консистенции - 0,55; 0,5 и 0,45;
- коэффициент, учитывающий нарастание осадки сваи во времени, принимаемый равным:
0,5 - для пылевато-глинистых грунтов твердой консистенции;
0,4 - для пылевато-глинистых грунтов полутвердой и тугопластичной консистенции;
0,3 - для пылевато-глинистых грунтов мягкопластичной консистенции;
Sпр.ср. - предельно допустимая средняя осадка фундаментов, принимаемая для малоэтажных сельских зданий равной 10 см;
- предельная несущая способность боковой поверхности буронабивной сваи, определяемая по формуле
(3.3)
где Рср. - среднее давление на контакте боковой поверхности сваи с грунтом, равное
(3.4)
где - коэффициент бокового давления бетонной смеси принимается равным 0,9;
- удельный вес бетонной смеси, кН/м3;
l0 - длина участка сваи, на котором давление бетонной смеси на стенки скважины линейно возрастает с глубиной, l0= 2 м;
- относительная усадка бетона при твердении в контакте с грунтом: при показатели текучести грунта 0,20 JL < 0,75 = 3·10-4, при 0 JL <0,20 = 4·10-4, при JL<0 =5·10-4;
Е, - соответственно расчетный модуль деформации и коэффициент Пуассона грунта.
Входящие в формулу (3.3) удельное сопротивление с1 и угол внутреннего трения грунта с учетом его упрочнения при бетонировании сваи равны: ; с1 = сI n, где , сI - расчетный угол внутреннего трения и расчетное сцепление грунта естественного сложения; n - коэффициент, принимаемый равным 1,8; 1,4; 1,3 и 1,2 соответственно для грунтов твердой, полутвердой, тугопластичной и мягкопластичной консистенции.
Примечание. При неоднородном в пределах длины сваи грунте в расчет вводятся средневзвешенные значения используемых характеристик.
3.3. Расчетная несущая способность пирамидальных свай и забивных блоков определяется по ВСН 26-84 "Проектирование и устройство пирамидальных свай и забивных блоков для малоэтажных сельских зданий".
4. Расчет свайных фундаментов по деформациям пучения грунта
4.1. Расчет свайных фундаментов по деформациям пучения производится исходя из следующих условий:
h Sи; (4.1)
Sот h; (4.2)
(4.3)
где h - подъем наименее нагруженной сваи, вызванный пучением грунта;
Sот - осадка сваи после оттаивания грунта;
- относительная деформация фундамента;
Sи, - соответственно предельные абсолютные и относительные деформации пучения фундамента которые допускается принимать по таблице.
Таблица
Предельные деформации фундаментов
Конструктивные особенности зданий Предельные деформации пучения Sи, см Предельные относительные деформации пучения м
относительный прогиб или выгиб относительная разность деформаций пучения
Бескаркасные здания с несущими стенами из:
панелей 2,5 0,00035
блоков и кирпичной кладки без армирования 2,5 0,00050
блоков и кирпичной кладки с армированием 3,5 0,00060
здания с деревянными конструкциями 5 - 0,006
Здания стоечно-балочной конструкции 4 - 0,005
Примечание. На основании расчета системы фундаментная балка-стена на прочность допускается уточнять значения и Sи.
4.2. Подъем буронабивной сваи
...